
Efficient Bump Mapping Hardware

Mark Peercy
John Airey

Brian Cabral
Silicon Graphics Computer Systems �

Abstract
We present a bump mapping method that requires minimal hardware
beyond that necessary for Phong shading. We eliminate the costly
per-pixel steps of reconstructing a tangent space and perturbing the
interpolated normal vector by a) interpolating vectors that have been
transformed into tangent space at polygon vertices and b) storing a
precomputed, perturbed normal map as a texture. This represents a
considerable savings in hardware or rendering speed compared to a
straightforward implementation of bump mapping.

CR categories and subject descriptors: I.3.3 [Computer
Graphics]: Picture/Image generation; I.3.7 [Image Processing]: En-
hancement

Keywords: hardware, shading, bump mapping, texture map-
ping.

1 INTRODUCTION
Shading calculations in commercially available graphics systems
have been limited to lighting at the vertices of a set of polygons,
with the resultant colors interpolated and composited with a texture.
The drawbacks of Gouraud interpolation [9] are well known and in-
clude diffused, crawling highlights and mach banding. The use of
this method is motivated primarily by the relatively large cost of the
lighting computation. When done at the vertices, this cost is amor-
tized over the interiors of polygons.

The division of a computation into per-vertex and per-pixel com-
ponents is a general strategy in hardware graphics acceleration [1].
Commonly, the vertex computations are performed in a general
floating point processor or cpu, while the per-pixel computations
are in special purpose, fixed point hardware. The division is a
function of cost versus the general applicability, in terms of qual-
ity and speed, of a feature. Naturally, the advance of processor and
application-specific integrated circuit technology has an impact on
the choice.

Because the per-vertex computations are done in a general pro-
cessor, the cost of a new feature tends to be dominated by additional
per-pixel hardware. If this feature has a very specific application,
the extra hardware is hard to justify because it lays idle in applica-
tions that do not leverage it. And in low-end or game systems,where
every transistor counts, additional rasterization hardware is partic-
ularly expensive. An alternative to extra hardware is the reuse of
existing hardware, but this option necessarily runs much slower.

�
fpeercy,airey,cabralg@sgi.com
2011 N. Shoreline Boulevard
Mountain View, California 94043-1389

Shading quality can be increased dramatically with Phong shad-
ing [13], which interpolates and normalizes vertex normal vectors
at each pixel. Light and halfangle vectors are computed directly in
eye space or interpolated, either of which requires their normaliza-
tion for a local viewer and light. Figure 1 shows rasterization hard-

H interp

L interp

N interp normalize

normalize

normalize

illumination

Figure 1. One implementation of Phong shading hardware.

ware for one implementation of Phong shading, upon which we base
this discussion.1 This adds significant cost to rasterization hard-
ware. However higher quality lighting is almost universally desired
in three-dimensional graphics applications, and advancingsemicon-
ductor technology is making Phong shading hardware more prac-
tical. We take Phong shading and texture mapping hardware as a
prerequisite for bump mapping, assuming they will be standard in
graphics hardware in the future.

Bump mapping [3] is a technique used in advancedshading appli-
cations for simulating the effect of light reflecting from small pertur-
bations across a surface. A single component texture map, f(u; v),
is interpreted as a height field that perturbs the surface along its nor-
mal vector, N = (Pu � Pv)=j(Pu � Pv)j, at each point. Rather
than actually changing the surface geometry, however, only the nor-
mal vector is modified. From the partial derivatives of the surface
position in the u and v parametric directions (Pu andPv), and the
partial derivatives of the image height field in u and v (fu and fv),
a perturbed normal vectorN0 is given by [3]:

N
0 = ((Pu � Pv) +D)=j(Pu � Pv) +Dj (1)

where

D = �fu(Pv �N)� fv(N�Pu) (2)

In these equations, Pu and Pv are not normalized. As Blinn
points out [3], this causes the bump heights to be a function of the
surface scale becausePu�Pv changes at a different rate thanD. If
the surface scale is doubled, the bump heights are halved. This de-
pendence on the surface often is an undesirable feature, and Blinn
suggests one way to enforce a constant bump height.

A full implementation of these equations in a rasterizer is im-
practical, so the computation is divided among a preprocessingstep,
per-vertex, and per-pixel calculations. A natural method to support
bump mapping in hardware, and one that is planned for a high-end
graphics workstation [6], is to compute Pu � Pv , Pv � N, and
N�Pu at polygon vertices and interpolate them to polygon interi-
ors. The perturbed normal vector is computed and normalized as in
Equation 1, with fu and fv read from a texture map. The resulting
normal vector is used in an illumination model.

1Several different implementations of Phong shading have been suggested
[11][10][4][5][7][2] with their own costs and benefits. Our bump mapping algorithm
can leverage many variations, and we use this form as well as Blinn’s introduction of
the halfangle vector for clarity.

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

+

wide interp

H interp

L interp normalize illumination

−N x Pu

wide interp

texture

−Pv x N

Pu x Pv

fu , fv

wide interp

*

*

wide normalize

normalize

fu

 fv

Figure 2. One possible implementation of bump mapping hard-
ware.

Several implementations of this bump mapping method with mi-
nor variations are possible; the hardware for one approach based on
Figure 1 is shown in Figure 2. BecausePu andPv are unbounded,
the three interpolators, the vector addition, vector scaling, and nor-
malization must have much greater precision than those needed for
bounded vectors. These requirements are noted in the figure. One
approximation to this implementation has been proposed [8], where
Pv � N and N � Pu are held constant across a polygon. While
avoiding their interpolation, this approximation is known to have ar-
tifacts [8].

We present an implementation of bump mapping that leverages
Phong shading hardware at full speed, eliminating either a large in-
vestment in special purpose hardware or a slowdown during bump
mapping. The principal idea is to transform the bump mapping
computation into a different reference frame. Because illumination
models are a function of vector operations (such as the dot product)
between the perturbed normal vector and other vectors (such as the
light and halfangle), they can be computed relative to any frame. We
are able to push portions of the bump mapping computation into a
preprocess or the per-vertex processor and out of the rasterizer. As
a result, minimal hardware is added to a Phong shading circuit.

2 OUR BUMP-MAPPING ALGORITHM
We proceed by recognizing that the original bump mapping approx-
imation [3] assumes a surface is locally flat at each point. The per-
turbation is, therefore, a function only of the local tangent space.
We define this space by the normal vector, N, a tangent vector,
T = Pu=jPuj, and a binormal vector, B = (N � T). T, B, and
N form an orthonormal coordinate system in which we perform the
bump mapping. In this space, the perturbed normal vector is (see
appendix):

N
0

TS = (a; b; c)=
p

a2 + b2 + c2 (3)

a = �fu(B � Pv) (4)
b = �(fvjPuj � fu(T � Pv)) (5)
c = jPu � Pvj (6)

The coefficients a, b, and c are a function of the surface itself (via
Pu and Pv) and the height field (via fu and fv). Provided that the
bump map is fixed to a surface, the coefficients can be precomputed
for that surface at each point of the height field and stored as a texture
map (we discuss approximations that relax the surface dependence
below). The texel components lie in the range -1 to 1.

The texture map containing the perturbed normal vector is filtered
as a simple texture using, for instance, tri-linear mipmap filtering.

The texels in the coarser levels of detail can be computed by filter-
ing finer levels of detail and renormalizing or by filtering the height
field and computing the texels directly from Equations 3-6. It is well
known that this filtering step tends to average out the bumps at large
minifications, leading to artifacts at silhouette edges. Proper filter-
ing of bump maps requires computing the reflected radiance over all
bumps contributing to a single pixel, an option that is not practical
for hardware systems. It should also be noted that, after mipmap in-
terpolation, the texture will not be normalized, so we must normal-
ize it prior to lighting.

For the illumination calculation to proceed properly, we trans-
form the light and halfangle vectors into tangent space via a 3 � 3
matrix whose columns areT,B, andN. For instance, the light vec-
tor, L, is transformed by

LTS = L

�
T B N

#

�
(7)

Now the diffuse term in the illumination model can be computed
from the perturbed normal vector from the texture map and the trans-
formed light: N0

TS
� LTS . The same consideration holds for the

other terms in the illumination model.
The transformations of the light and halfangle vectors should be

performed at every pixel; however, if the change of the local tan-
gent space across a polygon is small, a good approximation can be
obtained by transforming the vectors only at the polygon vertices.
They are then interpolated and normalized in the polygon interiors.
This is frequently a good assumption because tangent space changes
rapidly in areas of high surface curvature, and an application will
need to tessellate the surfaces more finely in those regions to reduce
geometric faceting.

This transformation is, in spirit, the same as one proposed by
Kuijk and Blake to reduce the hardware required for Phong shading
[11]. Rather than specifying a tangent and binormal explicitly, they
rotate the reference frames at polygon vertices to orient all normal
vectors in the same direction (such as (0; 0; 1)). In this space, they
no longer interpolate the normal vector (an approximation akin to
ours that tangent space changes slowly). If the bump map is iden-
tically zero, we too can avoid an interpolation and normalization,
and we will have a result similar to their approximation. It should
be noted that the highlight in this case is slightly different than that
obtained by the Phong circuit of Figure 1, yet it is still phenomeno-
logically reasonable.

The rasterization hardware required for our bump mapping algo-
rithm is shown in Figure 3; by adding a multiplexer to the Phong
shading hardware of Figure 1, both the original Phong shading and
bump mapping can be supported. Absent in the implementation
of Figure 2, this algorithm requires transforming the light and hal-
fangle vectors into tangent space at each vertex, storing a three-
component texture map instead of a two-component map, and hav-
ing a separate map for each surface. However, it requires only a mul-
tiplexer beyondPhong shading, avoids the interpolation of (Pv�N)
and (N�Pu), the perturbation of the normal vector at each pixel,
and the extra precision needed for arithmetic on unbounded vectors.
Effectively, we have traded per-pixel calculations cast in hardware
for per-vertex calculations done in the general geometry processor.
If the application is limited by the rasterization, it will run at the
same speed with bump mapping as with Phong shading.

interp

interp

N interp normalize

normalize

normalize

illumination

texture

H
TS

L
TS

N’
TS

Figure 3. One implementation of our bump mapping algorithm.

Figure 4.The pinwheel height field is used as a bump map for the
tessellated, bicubic surface.

2.1 Object-Space Normal Map
If the texture map is a function of the surface parameterization, an-
other implementation is possible: the lighting model can be com-
puted in object space rather than tangent space. Then, the texture
stores the perturbed normal vectors in object space, and the light and
halfangle vectors are transformed into object space at the polygon
vertices and interpolated. Thus, the matrix transformation applied
to the light and halfangle vectors is shared by all vertices, rather than
one transformation for each vertex. This implementation keeps the
rasterization hardware of Figure 3, significantly reduces the over-
head in the geometry processor, and can coexist with the first for-
mulation.

2.2 Removing the surface dependence
The primary drawback of our method is the surface dependence of
the texture map. The dependence of the bumps on surface scale is
shared with the traditional formulation of bump mapping. Yet in ad-
dition, our texture map is a function of the surface, so the height field
can not be shared among surfaces with different parameterizations.
This is particularly problematic when texture memory is restricted,
as in a game system, or during design when a bump map is placed
on a new surface interactively.

The surface dependencies can be eliminated under the assump-
tion that, locally, the parameterization is the same as a square patch
(similar to, yet more restrictive than, the assumption Blinn makes
in removing the scale dependence [3]). Then, Pu and Pv are or-
thogonal (Pu �Pv = T �Pv = 0) and equal in magnitude (jPuj =
jPvj). To remove the bump dependenceon surface scale, we choose

Figure 5. Bump mapping using the hardware implementation
shown in Figure 2.

Figure 6.Bump mapping with the hardware in Figure 3, and the
texture map from Equations 3-6.

jPuj = jPvj = k, where k is a constant giving a relative height
of the bumps. This, along with the orthogonality condition, reduce
Equations 3-6 to

N
0

TS = (a; b; c)=
p

a2 + b2 + c2 (8)

a = �kfu (9)
b = �kfv (10)

c = k2 (11)

The texture map becomes a function only of the height field and not
of the surface geometry, so it can be precomputed and used on any
surface.

The square patch assumption is good for several important sur-
faces, such as spheres, tori, surfaces of revolution, and flat rectan-
gles. In addition, the property is highly desirable for general sur-
faces because the further Pu andPv are from orthogonal and equal
in magnitude, the greater the warp in the texture map when applied
to a surface. This warping is typically undesirable, and its elimina-
tion has been the subject of research [12]. If the surface is already
reasonably parameterized or can be reparameterized, the approxi-
mation in Equations 8-11 is good.

3 EXAMPLES
Figures 5-7 compare software simulations of the various bump map-
ping implementations. All of the images, including the height field,
have a resolution of 512x512 pixels. The height field, Figure 4, was

Figure 7.Bump mapping with the hardware in Figure 3, and the
texture map from Equations 8-11.

chosen as a pinwheel to highlight filtering and implementation ar-
tifacts, and the surface, Figure 4, was chosen as a highly stretched
bicubic patch subdivided into 8x8x2 triangles to ensure thatPu and
Pv deviate appreciably from orthogonal. The texture maps were fil-
tered with trilinear mipmapping.

Figure 5 shows the image computed from the implementation of
bump mapping from Figure 2. The partial derivatives, fu and fv , in
this texture map and the others were computed with the derivative
of a Gaussian covering seven by seven samples.

Figures 6 and 7 show our implementation based on the hardware
of Figure 3; they differ only in the texture map that is employed.
Figure 6 uses a texture map based on Equations 3-6. Each texel
was computed from the analytic values of Pu andPv for the bicu-
bic patch. The difference between this image and Figure 5 is almost
imperceptible, even under animation, as can be seen in the enlarged
insets. The texture map used in Figure 7 is based on Equations 8-
11, where the surface dependence has been removed. Minor differ-
ences can be seen in the rendered image compared to Figures 5 and
6; some are visible in the inset. All three implementations have sim-
ilar filtering qualities and appearance during animation.

4 DISCUSSION
We have presented an implementation of bump mapping that, by
transforming the lighting problem into tangent space, avoids any
significant new rasterization hardware beyond Phong shading. To
summarize our algorithm, we

� precompute a texture of the perturbed normal in tangent space
� transform all shading vectors into tangent space per vertex
� interpolate and renormalize the shading vectors
� fetch and normalize the perturbed normal from the texture
� compute the illumination model with these vectors

Efficiency is gained by moving a portion of the problem to the ver-
tices and away from special purpose bump mapping hardware in the
rasterizer; the incremental cost of the per-vertex transformations is
amortized over the polygons.

It is important to note that the method of transforming into tangent
space for bump mapping is independent of the illumination model,
provided the model is a function only of vector operations on the
normal. For instance, the original Phong lighting model, with the
reflection vector and the view vector for the highlight, can be used
instead of the halfangle vector. In this case, the view vector is trans-
formed into tangent space and interpolated rather than the halfan-
gle. As long as all necessary shading vectors for the illumination
model are transformed into tangent space and interpolated, lighting
is proper.

Our approach is relatively independent of the particular imple-
mentation of Phong shading, however it does require the per-pixel
illumination model to accept vectors rather than partial illumination
results. We have presented a Phong shading circuit where almost
no new hardware is required, but other implementations may need
extra hardware. For example, if the light and halfangle vectors are
computed directly in eye space, interpolators must be added to sup-
port our algorithm. The additional cost still will be small compared
to a straightforward implementation.

Phong shading likely will become a standard addition to hardware
graphics systems becauseof its general applicability. Our algorithm
extends Phong shading in such an effective manner that it is natural
to support bump mapping even on the lowest cost Phong shading
systems.

5 ACKNOWLEDGEMENTS
This work would not have been possible without help, ideas, conver-
sations and encouragement from Pat Hanrahan, Bob Drebin, Kurt
Akeley, Erik Lindholm and Vimal Parikh. Also thanks to the anony-
mous reviewers who provided good and insightful suggestions.

APPENDIX
Here we derive the perturbed normal vector in tangent space, a ref-
erence frame given by tangent, T = Pu=jPuj; binormal, B =
(N�T); and normal,N, vectors. Pv is in the plane of the tangent
and binormal, and it can be written:

Pv = (T � Pv)T+ (B �Pv)B (12)

Therefore

Pv �N = (B �Pv)T� (T � Pv)B (13)

The normal perturbation (Equation 2) is:

D = �fu(Pv �N)� fv(N�Pu) (14)
= �fu(Pv �N)� fvjPujB (15)
= �fu(B � Pv)T� (fvjPuj � fu(T �Pv))B (16)

Substituting the expression for D and Pu � Pv = jPu � PvjN
into Equation 1, normalizing, and taking TTS = (1; 0; 0), BTS =
(0; 1; 0), andNTS = (0; 0; 1) leads directly to Equations 3-6.

References

[1] AKELEY, K. RealityEngine graphics. In Computer Graphics
(SIGGRAPH ’93 Proceedings) (Aug. 1993), J. T. Kajiya, Ed.,
vol. 27, pp. 109–116.

[2] BISHOP, G., AND WEIMER, D. M. Fast Phong shading.
In Computer Graphics (SIGGRAPH ’86 Proceedings) (Aug.
1986), D. C. Evans and R. J. Athay, Eds., vol. 20, pp. 103–106.

[3] BLINN, J. F. Simulation of wrinkled surfaces. In Computer
Graphics (SIGGRAPH ’78 Proceedings) (Aug. 1978), vol. 12,
pp. 286–292.

[4] CLAUSSEN, U. Real time phong shading. In Fifth Euro-
graphics Workshop on Graphics Hardware (1989), D. Grims-
dale and A. Kaufman, Eds.

[5] CLAUSSEN, U. On reducing the phong shading method. Com-
puters and Graphics 14, 1 (1990), 73–81.

[6] COSMAN, M. A., AND GRANGE, R. L. CIG scene realism:
The world tomorrow. In Proceedings of I/ITSEC 1996 on CD-
ROM (1996), p. 628.

[7] DEERING, M. F., WINNER, S., SCHEDIWY, B., DUFFY,
C., AND HUNT, N. The triangle processor and normal vec-
tor shader: A VLSI system for high performance graphics.
In Computer Graphics (SIGGRAPH ’88 Proceedings) (Aug.
1988), J. Dill, Ed., vol. 22, pp. 21–30.

[8] ERNST, I., JACKEL, D., RUSSELER, H., AND WITTIG, O.
Hardware supported bump mapping: A step towards higher
quality real-time rendering. In 10th Eurographics Workshop
on Graphics Hardware (1995), pp. 63–70.

[9] GOURAUD, H. Computer display of curved surfaces. IEEE
Trans. Computers C-20, 6 (1971), 623–629.

[10] JACKEL, D., AND RUSSELER, H. A real time rendering sys-
tem with normal vector shading. In 9th Eurographics Work-
shop on Graphics Hardware (1994), pp. 48–57.

[11] KUIJK, A. A. M., AND BLAKE, E. H. Faster phong shad-
ing via angular interpolation. Computer Graphics Forum 8, 4
(Dec. 1989), 315–324.

[12] MAILLOT, J., YAHIA, H., AND VERROUST, A. Interactive
texture mapping. In Computer Graphics (SIGGRAPH ’93 Pro-
ceedings) (Aug. 1993), J. T. Kajiya, Ed., vol. 27, pp. 27–34.

[13] PHONG, B.-T. Illumination for computer generated pictures.
Communications of the ACM 18, 6 (June 1975), 311–317.

